Targeted Fibonacci Exponentiation

Burton S. Kaliski Jr.*

Version 1.0 — August 28, 2017

Abstract

A targeted exponentiation algorithm computes a group exponentiation operation
a® with a reversible circuit in such a way that the initial state of the circuit consists
of only the base a and fixed values, and the final state consists of only the exponential
a® and fixed values. Three targeted exponentiation algorithms based on Fibonacci
addition chains are considered, offering tradeoffs in terms of the number of working
registers and the number of iterations. The approaches also motivate related results on
the Fibonacci Zeckendorf array, including a new modular Hofstadter G problem and an
improvement to Anderson’s recent algorithm for locating pairs of adjacent integers in
the extended Fibonacci Zeckendorf array. The algorithms have applications in quantum
computing.

1 Introduction

Let a be an element of a group H, and let k be a positive integer. The group exponenti-
ation of a to the power k is the group element a* (where the group operation is written
multiplicatively). Group exponentiation can be computed by many different algorithms,
including numerous approaches based on binary representations as well as some based on
Fibonacci representations [BMT107] [Kle08] [Mel07].

Although binary exponentiation algorithms are generally more efficient than Fibonacci
algorithms, this advantage is primarily for classical, non-reversible computing, not for
reversible computing in general. In particular, if the base a is variable, Fibonacci expo-
nentiation may be preferable because its basic step — the mapping (a,b) — (b,ab) — is
inherently reversible ([Per13], Sec. 11).! In contrast, a reversible implementation of the
basic step in binary exponentiation — the mapping a — a? — carries forward the input

*bkaliski@alum.mit.edu. The views expressed are my own and do not necessarily reflect those of my
employer.

LThis is under the technical condition that the elements involved remain invertible, which can be assured
with appropriate parameter choices.

along with the output. As a consequence, a reversible circuit for binary exponentiation
with a variable base a needs registers for each of the successive squares in the binary “ad-
dition chain.” A reversible circuit for Fibonacci exponentiation, in contrast, only needs
registers for the latest values of ¢ and b. The core Fibonacci addition chain evolves in
place.

In either case, a basic reversible exponentiation circuit may produce as output not only
the exponential a¥, but also other “side values,” possibly including the input a itself. For
certain applications, especially in quantum computing, the presence of these additional
values can be problematic in terms of their effect on subsequent computation. In these
applications, it is preferable for the circuit to perform a targeted exponentiation where the
initial state of the registers in the reversible circuit consists of only the base a and fixed
“ancilla” values (or a “clean ancilla,” in the terminology of Héner et al. [HRS16]), and
the final state consists of only the exponential a* and fixed “garbage” values. Such an
approach assumes that a — aF is an invertible mapping, i.e., that kInv = k= mod r exists
(equivalently, that & and r are relatively prime, where r is the order of a in H).

The rest of the paper is organized as follows. After preliminaries in Section 2, the paper
presents three algorithms for targeted exponentiation. A basic approach based on a low-
to-high Fibonacci exponentiation algorithm is described in Section 3. Two improvements
follow: a “dual” approach in Section 4 based on a variant of the low-to-high algorithm,
and a hybrid approach in Section 5 that combines a high-to-low algorithm, here called
Hofstadter G pair exponentiation, with the low-to-high algorithm. Quantum computing
applications are discussed in Section 6. The paper concludes with suggestions for further
research.

Appendices include a proof of correctness of the Hofstadter G pair exponentiation algo-
rithm; a solution to a new modular Hofstadter G problem; and an improvement to An-
derson’s recent algorithm [And14] for locating pairs of adjacent integers in the extended
Fibonacci Zeckendorf array.

2 Preliminaries

Fibonacci numbers. Let Fy =0, Fy =1, F; = F;_1 + F;_o for ¢ > 2 denote the Fibonacci
numbers. Let ¢ = (14 1/5)/2 denote the Golden Ratio.

Bit strings. A bit string ¥/ is a sequence of bits (v1...vy), where v; € {0,1} and [|7]
denotes the length of 7. Let () denote the empty string. The concatenation of two bit
strings U and S is written 7|/ 5.

The “up shift” of a bit string?, denoted 1}, moves bits to higher-indexed positions, adding

24Up” and “down” are preferred here to the usual “left” and “right,” to focus on the effect of shifting

in ¢ new 0 bits at the lowest-indexed positions:

%

—~
ﬁﬂlé«)O V1V||17H>, ZZO

The “down shift,” denoted J} similarly moves bits to lower-indexed positions, dropping off
the 7 lowest-indexed bits:

LA . -
yU,z:<1/Z-+1...l/||g”>, OSZSHVH_l

If i > ||7]|, then 7 i = ().

Fibonacci sum. Let n be a non-negative integer. The Fibonacci sum corresponding to a
bit string 7, denoted F1BSuM(7), is defined as

17l

FiBSum(7) 2 Z viFiiq
i=1

(Here, as is conventional, the sum starts at the second 1, i.e., F5, rather than at F}.)

Fibonacci representation. If n = FIBSUM(¥), then U is a Fibonacci representation of n.
Every positive integer n has at least one Fibonacci representation. If n < Fj, —2, then there
exists at least one Fibonacci representation of n that is no more than h — 3 bits long.

Zeckendorf representation. A Fibonacci representation is in Zeckendorf form if its most
significant bit, i.e., vz, is 1, and no two consecutive bits are 1. Every positive integer n has
exactly one such Zeckendorf representation [Zec72] [Lek51]. The Zeckendorf representation
of an integer may be determined by a “greedy” high-to-low algorithm that repeatedly selects
the largest possible Fibonacci number less than or equal to the remaining balance in the
integer. If Fj,_1 < n < Fp — 1, then the Zeckendorf representation of n is h — 2 bits
long.

Hofstadter’s G sequence [Hof00], denoted G(z), may be defined recursively as G(0) = 0,
G(1) =1, and G(z) = x — G(G(x — 1)) for x > 2. The particular form of the recursion is
not directly relevant to the applications described here. However, the following property,
shown by Granville and Rasson [GR88] is:

Ve >0, G(z)=|o (z+1)] . (1)

A Hofstadter G pair is a pair of positive integers (u,v) such that u = G(v).

Intervals. (x : y) denotes the open interval containing all z between = and y.

on the significance of the bits, rather than their position, given that Fibonacci representations often have
their least significant bits on the left, whereas binary representations often have theirs on the right.

Modular arithmetic notation. Let r be a positive integer. (z), denotes reduction modulo

r, ie., (z)r 2 2 mod r, and (x : y), denotes the open “modular interval” containing all z
between = and y modulo r. Specifically:

o If (), < (y)r, then (z : y), contains all z such that (z), < z < (y),.

o If (), > (y)r, then it contains all z such that either (), <z <r or 0 < z < (y),-.

3 Basic approach

Following general methods in reversible computing, a basic approach to computing a tar-
geted exponentiation b = a* combines two reversible exponentiation circuits, one for raising
to the power k and the other for raising to the power kInv = k~! (mod r), i.e., the inverse
operation a = bFmv.

The first circuit combines a conventional exponentiation algorithm that maps a and other
fixed inputs to b and possibly input-dependent side values with a “rewinding” operation
that undoes the computation of the input-dependent side values and replaces them with
fixed side values.

The second circuit likewise combines an algorithm that maps b and other fixed inputs to
a, followed by its own rewinding operation.

If the two circuits produce the same intermediate value, then if the first is run in the
forward direction and the second is then run in reverse, the combination will produce b
and other fixed outputs from a and other fixed inputs — a targeted exponentiation.

Algorithm FIBExP, shown in Figure 1, may be employed as the core of this approach.

The proof of correctness of Algorithm FIBEXP is not detailed here, but may be shown
by induction, where the value of e after the ith iteration is a* for k; = FiBSUM(R |

(£~ 1)).

The number of iterations of Algorithm FIBEXP equals the length ¢ of K. If £ < r and
r < d)h, then r < Fpyo — 1, s0 k < Fpio — 2. As a result, there exists at least one
Fibonacci representation of £ with length at most h — 1 bits, and at least one Zeckendorf
representation with length at most A. The number of iterations can thus be bounded by
at most h — 1 with an appropriate choice of representation (or by h, if Zeckendorf form is
chosen).

The bound k < Fj, o —2 also holds for group orders 7 between ¢" and Fj, o —1. However, it
is convenient for later analysis to bound r < ¢, or equivalently to set h > [logs]

© 0 N O oA W N

=
[=]

Algorithm FiBExp

Input : A group element a and a non-negative integer k
Output: af
begin
Let R be a Fibonacci representation of k and let ¢ = ||R||;
(¢,d,e) + (1,a,1);
for 1 <+ 1 to ¢ do
(¢,d) (d, cd);
if k; = 1 then e < de;
end
return e;
end

Figure 1: Algorithm FIBEXP computes an exponential by scanning a Fibonacci represen-
tation in “low-to-high” order.

Algorithm FIBEXP may be considered a “low-to-high” Fibonacci exponentiation algorithm,
because bits of the exponent are scanned in increasing order of significance. The algorithm
is thus a counterpart to traditional “right-to-left” binary exponentiation algorithm (with
the convention that the rightmost bit of a binary representation is the least significant),
where in both cases a sequence of powers of the base are selectively multiplied into the
result, based on bits of the exponent.

Building a targeted exponentiation algorithm from Algorithm FIBEXP involves four main
steps, following the basic reversible computing approach above:

1. Run FiBEXP(a, k) forward.

2. Rewind the Fibonacci chain steps in FIBEXP(a, k). This replaces the input-dependent
side values with fixed side values.

3. “Fast forward” the Fibonacci chain steps in FIBEXP(b, kInv). (This is now the circuit
for raising to kInv, which is being run in reverse, so "rewind” becomes " fast forward.”)

4. Run FIBEXP(b, kInv) in reverse.

Algorithm BASICTARGETEDFIBEXP (see Figure 2 illustrates the approach. Each circuit
produces the same intermediate values up to a swap operation, (1,a,b). Not counting
temporary values, Algorithm BASICTARGETEDFIBEXP requires just three working registers
(to save space, the input a can be put into the register that holds ¢; the output b can be
taken out of the register that holds e). For purposes of comparison (see Section 7), the
algorithm may be considered to have a “profile” of 3 x 4h: three registers, roughly 4h
iterations.

© 0 N o

10

11
12

13

14

15
16
17

18
19
20
21
22

23

Algorithm BASICTARGETEDFIBEXP

Input : A group element a in a group of order r, and integer k between 1 and r — 1 that is
relatively prime to r
Output: af
begin
kInv=k~! (mod r);
Let R be a Fibonacci representation of k and let £ = ||R||;
Let ' be a Fibonacci representation of kInv and let £ = ||#/||;

// Run F1BExp(a,k) forward, producing (af’,af®+1 a¥)
(c,d,e) + (1,a,1);
for i <~ 1 to ¢ do
(¢,d) « (d; cd);
if k; =1 then e < de;
end

// Rewind Fibonacci chain for FiBExp(a,k), producing (1,a,a")
for i «+— ¢ down to 1 do

(¢,d) < (¢ td,c);
end

// Swap second, third registers, producing (1,a*,a)
(c,d,e) + (c,e,d);
// ¢‘Fast forward’’ Fibonacci chain for FiBExP(b, kInv), producing
(akFe’ JakFen a)
for i < 1 to ¢ do
(¢,d) + (d,cd);
end
// Run F1BExp(b, kInv) in reverse, producing (1,a*, 1)
for i < ¢’ down to 1 do
if K} =1 then e + d~'¢;
(c;d) < (c7'd,c);
end
return d;
end

Figure 2: Algorithm BASICTARGETEDFIBEXP computes a targeted exponentiation by com-
bining two low-to-high Fibonacci exponentiations and intermediate “rewinding” and ”fast-
forwarding” loops.

It is possible to do better by choosing different intermediate values to match. Two alternate
approaches described next offer different tradeoffs between the number of registers and the
number of iterations.

Remark. If k is relatively prime to r so that the mapping a — a* is invertible, and the
element a is not the group identity, then the various intermediate elements will also not
be the group identity. As a result, the group inverses, i.e., a~! and b~! in the rewinding
operations, will be well defined. Computing the inverses of these elements do not necessarily
add significant complexity, depending on the group and the implementation.

4 Dual approach

The intermediate values in the basic approach include both a and b, as well as the fixed
value 1. However, it is not necessary that either the input or the output be among the
intermediate values. One way to reduce the number of iterations is to match the outputs of
the core Fibonacci exponentiation algorithms directly, rather than rewinding to a common
value.

The core algorithms compute, at the very least, the Fibonacci chain values a’*, af*+1 and
bFe bFe+1 respectively, where ¢ and ¢ are the respective number of iterations. If instead
of computing a* and b*™, each core algorithm were to compute the other algorithm’s
Fibonacci chain values, then the rewinding and fast-forwarding loops would no longer be
needed.

The core of this approach is Algorithm FIBEXPDUAL, shown in Figure 3, which computes
two exponentials via low-to-high Fibonacci exponentiation.

Building a targeted exponentiation algorithm with this approach involves two main steps:
1. Run FIBEXxPDUAL(a, s,t) forward, where s = kFj, mod r and ¢t = kF} 1 mod r.

2. Run FIBExPDUAL(b, ¢',t') in reverse, where s’ = klnv- F, mod r, and t' = kInv -
Fp, mod r.

Algorithm DUALTARGETEDFIBEXP (see Figure 4) illustrates the approach. The interme-
diate values again the same up to a swap operation: (afh,an+1 pfh bF h+1). Not counting
temporary values, Algorithm DUALTARGETEDFIBEXP requires four working registers. Its
profile is thus 4 x 2h — half the number of iterations as the basic approach, with one
additional register.

Remark. Whereas Algorithm FIBEXPDUAL only requires that the lengths of each pair of
Fibonacci representations be the same, Algorithm DUALTARGETEDFIBEXP ties all four
together at h, for a practical reason: the values of each pair of exponents depend on the

© 0 N O o h

10

11

Algorithm FIBEXPDUAL

Input : A group element a and two non-negative integers s and ¢
Output: (a®,a?)
begin
Let ¢ and 7T be Fibonacci representations of s and ¢, respectively, padded if necessary with
most significant 0 bits to be the same length. Let ¢ = ||&| = ||7]I;
(¢,d,e, f) « (1,a,1,1);
for i + 1 to / do
(¢,d) < (d, cd);
if 0; = 1 then e < de;
if 7; =1 then f + df;
end
return (e, f);
end

Figure 3: Algorithm FIBEXPDUAL computes two exponentials in parallel via low-to-high
Fibonacci exponentiation.

lengths of the other pair of representations. Setting all four lengths to h avoids a circular
dependency.

5 Hybrid approach

The previous two approaches are both based on low-to-high Fibonacci algorithm, and
generate Fibonacci chains which then must be either rewound or matched. A different
approach is possible by employing a high-to-low Fibonacci algorithm, a counterpart of the
traditional “left-to-right” binary algorithm, where bits are scanned in in decreasing order of
significance and the base is instead selectively multiplied into the sequence of powers.

Algorithm HGPEXP, shown in Figure 5, illustrates this approach.

As the name suggests, Algorithm HGPEXP not only computes a, but also a“) — a

Hofstadter G pair exponentiation. (A proof of correctness of Algorithm HGPEXP is given
in Appendix A.)

The output of Algorithm HGPEXP, run in the forward direction, can be arranged to match
the output of Algorithm FIBEXP run in reverse, based on the following observation.

Lemma 1. If ¢ is odd and 0 < k < ¢*, then (kFy,kFy,1) is a Hofstadter G pair.

© 0 N o ok~ W N

10

11
12
13
14
15

16

17

18
19
20
21
22
23

24

Algorithm DUALTARGETEDFIBEXP

Input : A group element a in a group of order r, and integer k between 1 and r — 1 that is
relatively prime to r
Output: a*
begin
Let h be a positive integer such that r < ¢;
kInv + k=! (mod r);
s < kFy (mod r);
t < kFyy1 (mod r);
s’ « kInv- Fy, (mod r);
t' < kInv- Fp11 (mod r);
Let ¢ and 7 be Fibonacci representations of s and ¢ of length h, respectively, padded if
necessary with most significant 0 bits;
Let o/ and 7 be Fibonacci representations of s’ and ¢’ of length h, respectively, padded if
necessary with most significant 0 bits;

// Run F1BDUALEXP(a,s,t) forward, producing (af™, afh+i aFfn gkFn+1)
(¢,d,e,)« (1,a,1,1);
for i <~ 1 to h do
(¢c,d) < (d, cd);
if 0; = 1 then e < de;
if 7; =1 then f « df;
end

// Swap first, second pair of registers, producing (akF’L,akF’L“,th,th“)
(c,d,e, f) < (e, f,c,d);
// Run F1BDUALExP(b,s’,#') in reverse, producing (1,a*,1,1)
for i <~ h down to 1 do
if 7/ =1then f <+ d'f;
if 0/ =1 then e < dl¢;
(c;d) (Cilda c);
end
return d;
end

Figure 4: Algorithm DUALTARGETEDFIBEXP computes a targeted exponentiation by com-
bining two dual low-to-high Fibonacci exponentiations.

[V

© W N O o~ W

10

Algorithm HGPExP

Input : A group element a and a non-negative integer v
Output: (%™, a?)
begin
Let /3 be a Fibonacci representation of v and let ¢ = || 3] ;
(c,d,e) < (a,1,1);
for i < ¢ down to 1 do
if 5, =1 then d + cd;
(d,e) « (e, de);
end
return (d,e)
end

Figure 5: Algorithm HGPEXP computes a high-to-low Fibonacci or Hofstadter G pair
exponentiation.

Proof. Expand the definition of G and apply the property Fy1 = ¢Fp + (—qﬁ)%/:

GkFpy1) = ¢ (KFpa +1)]
= [¢7'[k(¢Fr + (—¢) "]+ 1))
= kFy+[—(—¢) "+ o7

Because —(—¢)) = —¢=(+D if ¢/ is 0dd, the result equals kF; provided that ¢~k <
¢!, corresponding to the bound above. O

Algorithm HGPEXP(a, kFy, 1) thus produces (a*Fe, a*v+1),

A targeted exponentiation can therefore be computed by a hybrid of the high-to-low and
low-to-high Fibonacci exponentiation algorithms:

1. Run HGPEXP(a, kFy 1) forward, where ¢’ is an odd integer such that 0 < k < ¢
and kInv has a Fibonacci representation of length at most £'.

2. Run FIBEXP(b,kInv) in reverse.

Algorithm HYBRIDTARGETEDFIBEXP (see Figure 6) illustrates the approach. The in-
termediate values, as already discussed, are (akF v akF ¢+1 a). The number of iterations
of Algorithm HGPEXP equals the length of the Fibonacci representation of v = kFy 1.
Given that both k and kInv are between 0 and r — 1, it follows that ¢ < h if h is odd,
and ¢/ < h+1if his even, so v < rFp,o. Applying the bound on rFj, 5 developed in the
proof of Theorem 2, it follows that v < Fbpyo —2. Thus there exists at least one Fibonacci
representation E of v with length at most 2h — 2. The Fibonacci representation of kinwv,
including padding, meanwhile, has length at most A if h is odd and at most h + 1 if h is

10

10

11

12

13

14
15
16
17
18

19

even. The profile of Algorithm HYBRIDTARGETEDFIBEXP is thus 3 x 3h — roughly three
quarters the number of iterations as the basic approach, and the same number of working
registers.

Algorithm HYBRIDTARGETEDFIBEXP

Input : A group element a in a group of order r, and an integer k between 1 and r — 1 that
is relatively prime to r
Output: af
begin
kInv=k~! (mod r);
Let £/ be an odd integer such that r < (;SZI and kInv has a Fibonacci representation of
length at most #';
V< kFZ’-{-l;
// Run HGPExP(a,v), producing (a,a®®) a?)
Let ﬁ be a Fibonacci representation of v;
(c,d,e) + (a,1,1);
for i «+ ||| down to 1 do
if 8; =1 then d + cd;
(d, e) < (e, de);
end
// Reorder registers, producing (afv a*fv+1 q)
(c,d,e) « (d,e,c);
// Run F1BExp(b, kInv) in reverse, producing (1,a* 1)

Let &’ be a Fibonacci representation of kInv, padded if necessary with most significant 0
bits to length ¢';
for i + ¢ down to 1 do
if k; =1 then e + d7'¢;
(c.d) (c™'d,c);
end
return d;
end

Figure 6: Algorithm HYBRIDTARGETEDFIBEXP computes a targeted exponentiation by
combining a Hofstadter G pair exponentiation and a low-to-high Fibonacci exponentiation.

The following example demonstrates the hybrid approach. Let » = 177 and let £ = 76.
Then k < ¢! and kInv = k~! mod » = 106 has a Fibonacci representation of length at
most 11, so one may choose ¢ = 11.

To compute a’, Algorithm HYBRIDTARGETEDFIBEXP first sets v = kFjo = 76 - 144 =
10944. Algorithm HYBRIDTARGETEDFIBEXP then computes HGPEXP(a,10944). After
reordering the registers, the algorithm computes the reverse of FIBExp(b, 106).

11

| HGPEXP(a,10944) trace |

i || B; | cexp. | dexp. | e exp.

— || — 1 0 0

19 1 1 1 1

181 0 1 1 9 H FIBExP(b, 106) reverse trace H
17 1 1 3 4 i || ki | cexp. | dexp. | eexp.
16 || O 1 4 7 — || — | 6764 | 10944 1
15 1 1 8 12 111 0 | 4180 6764 1
14 0 1 12 20 10| 1 2584 4180 | -6763
13| 1 1 21 33 9 0 1596 2584 | -6763
12 0 1 33 54 8 0 988 1596 | -6763
11 1 1 55) 88 7 0 608 988 -6763
10 0O 1 88 143 6 1 380 608 -7751
9 1 1 144 232) 0 228 380 -7751
8 0 1 232 376 4 0 152 228 -7751
71 1 377 609 3|1 76 152 | -7979
6 || 0 1 609 986 21 0 76 76 -7979
5 1 1 987 1596 1 1 0 76 -8055
4 0 1 1596 2583

3 1 1 2584 4180

2 0 1 4180 6764

1 0 1 6764 | 10944

Figure 7: Example traces of Algorithms HGPExP and FIBEXP (in reverse) in the hybrid
approach.

The traces of these algorithms, in terms of the exponents corresponding to the registers,
are shown in Figure 7. For both algorithms, a Zeckendorf representation of the exponent is
employed, though any Fibonacci representation would work for the first algorithm, and any
Fibonacci representation with length 11, including padding, would work for the second. The
exponents after the first algorithm are (1, G(v),v) = (1,6764,10944). The exponents after
the swap and the second algorithm are (0, k,1 — kInv- k) = (0,76, —8055), or equivalently
(0,76,0) modulo 179. The final values of the registers are thus (a°,a"®,a") = (1,b,1), the
desired targeted result.

Remark. Algorithm HYBRIDTARGETEDFIBEXP chooses ' to be an odd number, so that
Lemma 1 can be applied. A corollary of Lemma 1 shows that if # is even and 0 < k < ¢+,
then (kFy —1,kFp1 —1) is a Hofstadter G pair. The intermediate value (a*7e | a*v+1 q)
can thus alternatively be computed by choosing an even ¢’ such that kInv has a Fibonacci
representation of length at most ¢/, computing HGPEXP(a, kFyy1 — 1), and multiplying

12

each of the resulting values (a**v~1, akt ¢+171) by a. The alternative potentially decreases

the number of iterations of both Algorithms HGPEXP and FIBEXP, because ¢ is smaller,
while adding the two multiplications by a.

Another alternative that also potentially decreases the number of operations is to find a
Hofstadter G pair (u,v) that is congruent to the intended values (kFy, kFy 1) modulo r,
rather than matching the values exactly. This is an example of a more general modular
Hofstadter G problem, which is to find a Hofstadter G pair (u,v) such that

u = s (modr)
=t (modr) |,

where r is a positive integer and s and ¢ are integers between 0 and r — 1. For the purposes
of the hybrid approach, the relevant parameters are s = kFy mod r and t = kFy 1 mod r.
One may choose ¢ = h for convenience, or ¢ as the possibly smaller length of the Fibonacci
representation of kInv. A general solution to the modular Hofstadter G problem is presented
in Appendix B.

6 Quantum exponentiation

The design of efficient circuits for exponentiation on a quantum computer has been well
studied since Shor’s breakthrough quantum algorithms for integer factoring and the discrete
logarithm problem in [Sho99].

In Shor’s algorithm, the base a for the exponentiation operation is fixed as an external
input to the quantum circuit. As a result, the successive squares of a, i.e., a,a?, a?,... can
be precomputed and “compiled” into a sequence of reversible multiplication circuits. The
output b = a¥ can then be computed by conditionally applying the multiplication circuits,
based on the corresponding bits of k, following the binary “right-to-left” exponentiation
algorithm. Binary exponentiation in this case only requires a fixed number of quantum
registers, so is well matched to Shor’s algorithm, making it the focus of research in quantum

exponentiation so far.

In other applications, however, the base a — or even the parameters of the group — may be
variable, generated by previous operations within a quantum circuit. For example, Bern-
stein et al.’s ingenious recent combination [BLV17] of Grover’s quantum search algorithm
with the Elliptic Curve Method for integer factoring computes exponentiation operations
in multiple groups in superposition. Though the exponent may be fixed, the parameters of
the elliptic curve group and thus the successive squares in binary exponentiation will vary,
and therefore can’t be precompiled into the circuit. This makes binary exponentiation less
efficient because of the larger number of quantum registers required for all the successive
squares, and favors Fibonacci exponentiation.

13

Bernstein et al.’s algorithm does not involve targeted exponentiation, however, because the
exponential itself does not need to be carried forward into further computation. Rather,
it is sufficient just to check whether the exponential is the group identity. This check can
be made alongside any side values, even input-dependent ones; the side values as well as
the exponential can then be rewound, restoring the initial input, i.e., a. As a result, a core
Fibonacci exponentiation algorithm such as Algorithm FIBExP or HGPEXP is sufficient,
without any of the additional complexity of the targeted exponentiation approaches.

One application where targeted Fibonacci exponentiation would be relevant is when a
superposition of multiple bases is raised to a fixed exponent, where the resulting super-
position of exponentials is then carried forward into subsequent computation. As further
discussed in Sec. 6.3 of [Kall7], such an exponentiation could potentially transform a ran-
dom eigenstate of a group operation in Shor’s algorithm into a fixed eigenstate, which may
be beneficial for further computation. The targeting ensures that individual exponentials
in the resulting superposition are not entangled with side values.

7 Conclusion

As quantum computing moves steadily toward practicality, quantum algorithm research,
especially for cryptanalytic applications, has taken on a much more practical note as well,
focusing on exact rather than asymptotic complexity [RNSL17]. At this point in the
development of the technology, every qubit and iteration counts, making optimization
particularly important.

Although targeted exponentiation appears to have only limited applications at this time,
it may nevertheless be helpful to have such algorithms among the tools to apply as new
applications are explored. The three approaches are discussed here offer tradeoffs in terms
of the number of working registers and iterations, as summarized in Figure 8. Further
improvements may be possible, perhaps not even involving Fibonacci addition chains at
all. Proving lower bounds on the number of working registers and iterations remains an
open question.

Acknowledgements

This paper, similar to the one that motivated it [Kall7], was written on personal time, and
I again thank my family for their encouragement and support. The paper also provided
an opportunity to reconnect to Prof. Peter Anderson, long-time faculty member at the
Rochester Institute of Technology, who supervised my role as an adjunct faculty member
at the start of my career. I am grateful to him for his helpful technical comments as well

14

H Iterations H Basic ‘ Dual ‘ Hybrid H
O (17a’ 1) (]'?a/’]"]') (a’ 17 1)
1
h (anv aFH—l) ak) (th7 th+1 9 ath) ath-‘rl)]:
7 !
2h (1,a,d") (1,a*,1,1) (a,a*Fe, a*Fer)
I
3h (aFFe a*fFesa q) (1,a",1)
I
4h (1,a*,1)
| Profile | 3 x 4h \ 4 x 2h \ 3 x 3h |

Figure 8: Comparison of three Fibonacci-based approaches for targeted exponentiation.
“Profile” is number of working registers times rough number of iterations, rounded to
multiples of h = [log, 7]

as for his contributions, alongside many other mathematicians, to the remarkable theory
and practice of Fibonacci numbers.

References

[And14]

[BLV17]

[BMT*07]

[GRSS]

[Hof00)]

Peter G. Anderson. Extended Fibonacci Zeckendorf theory. In Proceedings of
the Sizteenth International Conference on Fibonacci Numbers and Their Ap-
plications, pages 15-21, 2014.

Nadia Bernstein, Daniel J.and Heninger, Paul Lou, and Luke Valenta. Post-
quantum RSA. In International Workshop on Post-Quantum Cryptography,
pages 311-329. Springer, 2017.

Andrew Byrne, Nicolas Meloni, Arnaud Tisserand, Emanuel Popovici, and
William Marnane. Comparison of simple power analysis attack resistant algo-
rithms for an elliptic curve cryptosystem. Journal of Computers, 2(10):52-62,
2007.

Vincent Granville and Jean Paul Rasson. A strange recursive relation. Journal
of Number Theory, 30(2):238-241, 1988.

Douglas R. Hofstadter. Godel, Escher, Bach: An Eternal Golden Braid (with
a new preface by the author). 2000.

15

[HRS16] Thomas Héner, Martin Roetteler, and Krysta M. Svore. Factoring using 2n+
2 qubits with toffoli based modular multiplication. Quantum Information &
Computation, 17(7&8):0673-0684, 2016.

[Kall7] Burton S. Kaliski Jr. A quantum “magic box” for the discrete logarithm prob-
lem. Cryptology ePrint Archive, Report 2017/745, 2017. http://eprint.
iacr.org/2017/745.

[Kle08] Shmuel T. Klein. Should one always use repeated squaring for modular expo-
nentiation? Information Processing Letters, 106(6):232-237, 2008.

[Lek51] Cornelius Gerrit Lekkerkerker. Voorstelling van natuurlijke getallen door een
som van getallen van Fibonacci. Stichting Mathematisch Centrum. Zuivere
Wiskunde, (ZW 30/51):1-5, 1951.

[Let15] Pierre Letouzey. Hofstadter’s problem for curious readers. arXiv preprint
arXw:1509.02479, 2015.

[Mel07] Nicolas Meloni. New point addition formulae for ECC applications. WAIFI,
4547:189-201, 2007.

[Mor80] David R. Morrison. A Stolarsky array of Wythoff pairs. A Collection of
Manuscripts Related to the Fibonacci Sequence, pages 134—136, 1980.

[Per13] Kalyan S. Perumalla. Introduction to Reversible Computing. CRC Press, 2013.

[RNSL17] Martin Roetteler, Michael Naehrig, Krysta M. Svore, and Kristin Lauter. Quan-
tum resource estimates for computing elliptic curve discrete logarithms. arXiv
preprint arXiw:1706.06752, 2017.

[Sho99] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Review, 41(2):303-332, 1999.

[ZecT2] Edouard Zeckendorf. Représentation des nombres naturels par une somme de
nombres de Fibonacci ou de nombres de Lucas. Bull. Soc. Roy. Sci. Liege,
41:179-182, 1972.

A Proof of correctness of Algorithm HGPExp
Several building blocks will help establish the correctness of Algorithm HGPExP.

Lemma 2. If (u,v) is a Hofstadter G pair, then (v,u + v) and (v + 1L,u + v + 1) are
Hofstadter G pairs.

16

Proof. 1f (u,v) is a Hofstadter G pair, then by definition, u = G(v) = |¢~!(v+1)]. Rewrite
this as interval membership:

ptv+1)e(u:ut1)

(An open interval on the lower bound is appropriate because ¢~'(v + 1) cannot be an
integer.) Add v + 1 to both sides:

plv+1)e(u+v+1l:u+v+2)
Now multiply by ¢~ !:
v+le (@ utv+1):¢ Hut+v+2)
Next, rewrite as an interval for ¢! (u + v + 1):
dtu+v+)e(w+1—9tiv+1)Cc(v:v+1)

It follows that |¢~!(u + v + 1)] = v, which implies that v = G(u + v) and that (v,u + v)
is a Hofstadter G pair. The proof for (v + 1,u + v + 1) is similar. O

-,

Lemma 3. If (u,v) is a Hofstadter G pair and v = FIBSUM(f) for some Fibonacci repre-
sentation (3, then w = FIBSum(S |} 1) + (1.

Proof. Rewrite G(v) as above and expand v:

[
¢ ZﬁiFiH +1] €(w:u+1)
=1

Now apply the property F;,1 = ¢F; + (—¢)~* to each term of the sum:

18] 18] 18]
oD BiF+1 | =0 [D BiGF 4+ (—¢))+ 1| =D BiFiteto !,
=1

i=1 i=1
where the error term e is defined as

[
e==) Bi(-¢) Y
=1

The error term can readily be shown to bounded by —¢~! < € < ¢~2, which implies that

[
ZﬁiFie(u—e—ngl:u-l—l—e—gi)*l)c(u—l:u—i—l)
=1

The left-hand side is equivalent to FIBSUM(E | 1) + B1. Because the only integer in the
interval on the right-hand side is wu, the result follows. O

17

It is noteworthy that even though v may have more than one Fibonacci representation 5 ,
all lead to the same u = G(v).

Remark. The preceding lemmas are both proved in a different way by Letuozey, without
reference to the interval bounds on v ([Let15], Theorems 9 and 14).

-, -,

Lemma 4. If (u,v) is a Hofstadter G pair and v = FIBSUM(3), then u+v = FIBSUM((0)||5)
and uw+ v + 1 = F1BSuM((1)||5).

Proof. Expand and add the Fibonacci sums for v and v:

18] 18] 18]
utv=>Y BiFi+> BiFis1=Y BiFia
i=1 i=1 i=1

The sum is thus equivalent to FIBSUM(S 1 1) = F1BSuM((0)||5). The proof for (v+1,u+
v+ 1) is similar. O
Lemmas 24 now may be applied to show the following.

Theorem 1. Algorithm HGPEXP(a,v) computes (a%®) a?), i.c., (a*,a’) where (u,v) is

the Hofstadter G pair associated with v.

Proof. Let (bp41,ce+1) = (1,1) be the initial values of b and ¢, and let (b;, ¢;) be the values
after the ith iteration of the for loop, where i runs from ¢ down to 1. Let (ugy1,ve41) =
(0,0) and let (u;,v;) denote the exponents corresponding to (b;, ¢;):

up = i1+ i

v = Uip1 + Vi1 + B

Applying Lemmas 24, it is straightforward to see by induction that each pair (u;, v;) is a
Hofstadter G pair and that the ith exponent v; satisfies

v; = FIBSUM((B; ... B¢))

The final exponent pair is thus (G(v),v) = (u,v), and the result follows. O

Given that H is a group of order r, HGPEXP(a,v) equivalently computes (a*, a') where
s = G(v) (mod r) and t = v (mod r). Algorithm HGPEXP can thus be targeted to
produce a specific output pair (a®, a') given an appropriate Hofstadter G pair, hence the
motivation for the problem described next.

18

B Modular Hofstadter G problem

Let r be a positive integer and let s and ¢ be integers between 0 and r — 1. The modular
Hofstadter G problem, denoted MHG(r, s,t), is to find a Hofstadter G pair (u,v) such
that

u = s (modr)
= t (modr)

The MHG problem arises in connection with the hybrid approach in Section 5, but may
have more general applications. The problem may be viewed as a modular arithmetic
counterpart to Anderson’s algorithm for finding a pair of adjacent integers in the extended
Fibonacci Zeckendorf array [And14] (see also Appendix C), though focusing here only on
the right half of the array.

The following building block will prove helpful in the solution.

Lemma 5. Let r be a positive integer and let v be a real number, 0 < v < 1. If r < ¢"
for some positive integer h, then there exists at least one integer w in the range 0 < w <
Fyio — 1 such that (p~'w); € (y: v+ 1/7)1.

Proof. Consider first the case that h is even.

Because r < ¢ < Fj 2, the width of the interval (y: v+ 1/r); is greater than 1/F} 2, so
it contains the value j/F}, 1o where j = [yFpy2].

Now consider the second interval (¢ lwy : ¢~ lwy); where wy = jFj, 11 mod Fj, o and
wg = (j + 1) Fhy1 mod Fipo. Because ¢~ = Fyi1/Fyyo — ¢~ "2/ and (Fry)? =1
(mod Fj,12) for even h, the interval can be rewritten as

(j ¢—(h+2) j+1 ¢—(h+2)>

— wy, . wg
Frio Fpio Fhio Fhio

Because qﬁ*(h*z) < 1/Fp12 and both wy, and wg are between 0 and Fj 4o — 1, the “error

terms” in the second interval bounds are both less than 1/Fj 5. The second interval thus
also contains j/Fp 0.

The width of the second interval is 1/Fj o 4+ (wy — wg)d~ "2 /F, 5. Based on the
definition of wy, and wp, the difference (wy — wy) is either —F}4q or Fp1o9 — F11 = Fy,
so the maximum width of the interval is 1/Fj 9 + Fi¢~ "2 /F, 5. Because Fj g =
®?F), + ¢~ for even h, the width simplifies to

1 ¢—(h+2) 1+ ¢_(h+2)Fh

+ =
Fiio Fhio G2Fy + N

=g "

19

© 0 N O oA W N

[~ S~ S SO SO
g A W N = O

[
[+

(The minimum width is 1/Fy40 — Fyp1¢~ "2 /F 0 = ¢~ (D)

Because the two intervals overlap, the wider interval must contain at least one of the
endpoints of the narrower. Because 1/r > ¢~ (y: v+ 1/r); is wider, and thus contains
at least one of (¢ 1wy)1 and (¢ 'wpy)1, thereby producing a solution w.

The proof for the case that h is odd is similar, with the candidates instead defined as
wy, = jFy, mod Fjy9 and wy = (j — 1)F, mod F,yo. O

Lemma 6. Algorithm FINDW, shown in Figure 9, finds a multiple of ¢~ in the interval
(yiy+1/m).

Proof. This follows from the steps in Lemma 5 for computing j, wgr, and wr,.]

Remark. Algorithm FINDW may be simplified by computing wy only if needed, and by
observing that wy = wy, + Fp1 mod Fp o regardless whether h is even or odd.

Algorithm FINDW

Input : A positive integer r and a real number « between 0 and 1
Output: A non-negative integer w such that (¢~ *w); € (y: v+ 1/r);

begin
Let h be the least positive integer such that r < ¢".
J 4 [vFni2l;
if h is even then
wr, < jFpy1 mod Fjg;
wy < (j 4+ 1)Fpq1 mod Fjyo;
else
wr, < jF, mod Fjyo;
wy (] — 1)Fh mod Fh+2;
end
if (¢~twr); € (y:v+1/r); then return wy;

)
else return wy;
)

end

Figure 9: Algorithm FINDW finds a multiple of ¢! in a specified interval modulo 1.

Theorem 2. If r < ¢, then there exists at least one solution (u,v) to MHG(r, s,t) such
that v S F2h+2 — 2.

Proof. 1t is sufficient to find a nonnegative integer w such that

G(wr+1t) = ¢ Hwr+t+1)] =5 (modr)

Rewrite the equation as interval membership modulo r (observing as previously that the
integer bound s is not achievable):

(0 Hwr+t+1)), € (s:s5+1),

Now move all terms except ¢~ 'wr to the right and normalize mod 1:
(7w e(y:iy+1/r1

where v = ((s — ¢~ (t + 1)) /7)1.

By Lemma 5, there exists at least one such integer w in the range 0 < w < Fj 49 — 1 such
that (¢~ 'w); € (v : v+ 1/r)1. Fix such a w and let v = wr +t. If follows that (G(v),v) is
a solution to the MHG problem.

Next, consider the bound on v. Based on the bounds on ¢ and w, it it easy to see that
0 < v < rFj49 — 1. The maximum integer value of r, [¢"], is ¢" + ¢~ — 1 if h is even and
¢" — ¢~ if h is odd, following observations by Caveney and Catalini on OEIS sequence
A014217. For even h, this gives the following bound on rFj,o:

h+2 _ 1—(h+2)
T'Fh+2 < ¢ Qb

< 7 (" + 97" 1)
¢2h+2 _ ¢h+2 + ¢2 _ ¢—2 + ¢—(h+2) _ ¢—(2h+2)

V5
= Foppo— Fhpo+Fy

which is at most Fsp10 — 2. For odd h, the bound is

P2 4 = (h+2)

rFpyo < NG (¢ =)
¢2h+2 . ¢2 + ¢—2 o ¢—(2h+2)
a Vb
= Fopya—1
Thus, for both even and odd h, it follows that 0 < v < rFpi0 — 1 < Fopyo — 2. O

Corollary 1. There exists at least one solution (u,v) such that the Fibonacci representation
of v is at most 2h — 1 bits long.

Corollary 2. There exists at least one solution (u,v) such that the Zeckendorf represen-
tation of v is at most 2h bits long.

Theorem 3. Algorithm SOLVEMHG, shown in Figure 10, solves the MHG problem.

Proof. This follows from the steps in Theorem 2 for computing v, w, v and wu. O

21

o N O s W oN

Remark. Algorithms SOLVEMHG and FINDW may be “rationalized” by replacing ¢~
with the approximation F}1/Fpo. FINDW would then begin by setting j as

Fpio—(t+ 1)F
j<_[5h+2 (t+1)Fhi1

—‘ mod Fjo
r

The proofs can be modified to accommodate such approximations, supporting a modified
algorithm that involves only integer operations.

Algorithm SOLVEMHG

Input : A positive integer r and two integers s and ¢t between 0 and r — 1
Output: Two non-negative integers v and v such that u = s mod r, v = ¢ mod r, and
u=G(v)

begin
v (s/r—¢ Lt +1)/r)1;
w < FINDW (~, r);
v —wr +1;
u <+ G(v);
return (u,v);
end

Figure 10: Algorithm SOLVEMHG solves the modular Hofstadter G problem.

The following example illustrates Algorithms FINDW and SOLVEMHG.
Let r =177, s = 141, and t = 25. Because r < ¢'!, one may choose h = 11.

With these parameters, the interval (v : v 4 1/r); is bounded by

— ¢ (t+1 141 — ¢~ 1.2
v = <5¢(+)> :<¢6> ~ 0.6979302
. 179 .

.
1 s—¢ '(t+1)+1 141 — ¢ 126 +1
ro = ~ 0.7035258
v+ r (r . 179 X
Algorithm FINDW computes
j = [vFni2] =~ [0.6979392 - 233] = 163

wy, = jFp mod Fpio =163 -89 mod 233 = 61

Because (¢! -61); =~ 0.7000734 is in the interval, the algorithm returns w = 61.

Algorithm SOLVEMHG computes

v=wr+t=061-179 + 25 = 10944

22

The corresponding value of w is
u=GW) =o' (v+1)] =|¢' 10945] = 6764
The correctness of the solution is confirmed by the congruences

10944 = 25 (mod 179)
6764 = 141 (mod 179)

These parameters match the ones in Section 5 and Figure 7, showing that the solution to
the MHG problem, in this particular case with h odd, gives rise to the same exponent v as
would be directly obtained by computing v = kFj,41.

C Reyvisiting Anderson’s algorithm

Anderson [And14] recently showed how to solve a problem related to the MHG problem:
to locate a given pair of adjacent integers in the extended Fibonacci Zeckendorf array.
Morrison [Mor80] had previously proved that every pair of positive integers appears exactly
once as adjacent elements in the array. Anderson extended the result to show that every
pair of integers (u,v) such that v¢ + u > 0 appears exactly once, and also gave three
algorithms for locating these pairs, which may be called Anderson pairs.

Anderson’s first algorithm for locating a pair (u,v) involves computing the Fibonacci suc-
cessors of (u,v) until a pair is reached whose Zeckendorf representations are single-index
shifts of one another. Assuming (u,v) is in the left half of the array, such a condition
signals that the resulting pair has reached the right half. Indeed, although not called out
in the algorithm, the recursion can stop as soon as the second element of the resulting pair
has reached the right half. This can be also detected by checking whether the resulting
pair is a Hofstadter G pair.

The hybrid approach to targeted exponentiation in Section 5 follows a similar pattern of
recursion to Anderson’s first algorithm, but in reverse. Consider again the values of the
exponent of b generated in the trace in Figure 7, moving backwards from the end (and
writing left to right, with extended Fibonacci Zeckendorf array column numbers at the

top):

81-7| 6| -51]-4|-3 | -2 -1 0 1 2 3
76 | 76 | 152 | 228 | 380 | 608 | 988 | 1596 | 2584 | 4180 | 6764 | 10944

The first Hofstadter G pair in this sequence is (2584, 4180), marking the transition from the
left half of the array to the right half. Anderson’s first algorithm would locate (76, 76) in

23

the left half of the array by recursing it 9 times until it reaches (4180, 6764). The transition
could also be detected at (2584,4180). However, testing of successive pairs isn’t needed at
all, as the following observations show.

Lemma 7. Define the function
0(u,v) 2 _u+ ot
If (u,v) is a Hofstadter G pair, then §(u,v) € (—¢p~ 1 : ¢ 2).
Proof. Expand G(v) as usual and rewrite it as interval membership, as in Lemma 2:
ptv+1)e(u:ut1)
Now subtract u + ¢~ from both sides:
—ut ¢ v E (—¢T 1077
The proof follows.]

Lemma 8. If (u,v) is a Hofstadter G pair where v is in column 1 of the extended Fibonacci
Zeckendorf array, i.e., the Zeckendorf representation B of v has 1 = 1, then §(u,v) €

(=71 =077).

Proof. The result can be shown by similar analysis to the error bound in Lemma 3, with
the additional condition that 81 = 1 and 2 = 0 (as required by Zeckendorf form). The
upper bound on the interval in Lemma, 7 is thus reduced by ¢ 2 (because the error term
corresponding to f31, i.e., —¢~2, is always present), and again by ¢~ (because the error
term corresponding to 32, i.e., 3, is not).]

Lemma 9. If (u,v) is a Hofstadter G pair where v is in column j > 1 of the extended
Fibonacci Zeckendorf array, i.e., the Zeckendorf representation 3 of v has By = -+ =
Bj—1 =0 and B; =1, then §(u,v) € (—p~7 : —p~U+2)) if j is odd, and §(u,v) € (¢~
¢7) if j is even.

Proof. The interval can be shown by induction. Lemma 7 covers 7 = 1. Now suppose that
(u,v) is a Hofstadter G pair where v is in column j — 1 for 5 > 1. By definition of the
array, (u,u + v) moves one column to the right, i.e., u 4+ v is in column j. The pair is also
a Hofstadter G pair by Lemma 2. Now consider the value §(v,u + v):

S(vu+v)=—v+¢ Hutv)=—¢ tu—o¢p?v=—¢"16(u,v)

The bounds of the interval are thus multiplied by —¢~! with each move, and the result
follows. O

24

These lemmas, which recurse the intervals to the right, also show that every Hofstadter
G pair (u,v) occurs exactly once in a “one-column-extended” Fibonacci Zeckendorf array
that also includes column 0 from the left hand side. This array may be considered a semi-
extended Wythoff array by analogy with the extended Wythoff array that begins with
column —1 per OEIS sequence A033513.

The intervals can be precursed to the left as well:

Lemma 10. If (u,v) is an Anderson pair where v is in column j < 0 of the extended
Fibonacci Zeckendorf array, then 6(u,v) € (—¢~7 : —¢~U*2) if j is odd, and 5(u,v) €
(p=Ut2) . p=7) if j is even.

Proof. The proof is similar to Lemma 9 with the precursion multiplying the bounds of the
interval by —¢:

S(v—u,u)=—(v—u)+ ¢ ‘u=du—v=—ps(u,v)

The intervals thus alternate between positive and negative based on the column of v:

Column -2 -1 0 1 2

uterval | (L) | (0: 930 [32D | (039 [G 37)
Sign + — + — ¥
log,, (0:2) (—=1:1) (—=2:0) (=3:-1) (—4:-2)

The third row indicates the sign of the bounds of the interval, and fourth row shows the
range of logarithm base ¢ of the absolute value of the bounds. Because the intervals are
mutually exclusive and collectively exhaustive (ignoring the exact powers of ¢ on the inter-
val boundaries, which cannot be achieved), the value (u,v) falls in exactly one interval.
This means that it is possible to determine the column of v directly from §(u,v).

Theorem 4. Let (u,v) be an Anderson pair. Let m = [logy[d(u,v)[]. Then v is located
at column j of the extended Fibonacci Zeckendorf array, where j is defined as:

= { 2| (—m/2)] if 6(u,v) >0
2|((1 =m)/2)] —1 otherwise

The pair is located in row n = ulF_1_; +vF_;.

Proof. The column calculation follows the pattern in the table above. The row number
follows the movement of the pair. Precursing the pair back j columns if j > 0, or recursing
forward —j columns, if j < 0, produces (uF_1_; + vF_j,uF_; +vFi_;). At this point, the
left element of the pair is in column —1, whose values give the row number of the extended
Wythoff array, per OEIS sequence A033513. O

25

Although Anderson described his first algorithm as “inefficient,” the theorem shows that
the algorithm actually can be made very efficient indeed.

In addition to locating an Anderson pair (u,v), the theorem also provides a strategy for
generalizing Algorithm HGPEXP to generate the exponentials (a*,a") for any such pair.
The resulting Anderson pair exponentiation algorithm would first compute the column
location j of v. If the column is in the right half of the array, i.e., j > 1, then the algorithm
would proceed as in Algorithm HGPEXP. If it’s in the left half, however, the algorithm
would proceed as in Algorithm HGPEXP as far as the pair (uF_;+vF_;, uF_j+vFy_j) —
the one at the transition from the left half to the right — and then precurse by 1—j columns.
In contrast to Algorithm FIBEXPDUAL, which could compute the two exponentials in fewer
iterations, this new Anderson pair exponentiation algorithm requires only three working
registers, not four.

Finally, a corollary of Lemma 8 provides an algorithm for determining the Zeckendorf
representation of an integer from low to high, as an alternative to the conventional “greedy”
algorithm, which operates high to low.

Corollary 3. Ifv is in column 1 of the extended Fibonacci Zeckendorf array, then (¢~ 1v); €
(p72:1—¢73), otherwise (¢~ 1v)1 € (0: "2 U (1 —¢3:1).

The Zeckendorf representation can thus be determined a bit at a time by checking the value
of (¢~ 'v)1, subtracting the bit, down-shifting by computing the Hofstadter G function, and
repeating. This process can also be “rationalized” similar to the remark on Algorithms
SOLVEMHG and FINDW in Appendix B by approximating ¢! as a ratio of Fibonacci
numbers, with appropriate adjustments to the interval bounds. It is also possible to enu-
merate the set of possible Fibonacci representations low to high by a similar approach, with
overlapping intervals corresponding to available choices of 0 and 1 as least significant bits.
The low-to-high algorithm may be beneficial in implementations where the least significant
bit is needed first, e.g., for the exponent in Algorithm FIBEXP or FIBEXPDUAL when run
in the forward direction, and where it is preferable to compute the representation one bit
at a time to save space, rather than all at once.

26

